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Abstract. Learning in a generalised perceptron neural network model is investigated by 
numerical simulation. It is found that the distribution of learning times is very broad and 
spreads out as the system size is increased. The mean number of steps, k, to learn a 
first-order task is found to increase with system size according to a power law ( k )  - N u ,  (Y = 
1.86 *0.05. 

1. Introduction 

The recent growth of interest in neural network models in the physics community was 
prompted by the discovery of Hopfield (1982) that a highly connected system of 
formal neurons, similar to the Sherrington-Kirkpiitrick (1975) model, could act as a 
content-addressable memory; a system which can recall a previously stored pattern 
when presented with a corrupted or incomplete version of that pattern. Such a system 
clearly has great potential in the field of image recognition. It is, however, hoped that 
neural nets can provide both a model for neurophysiological processes and an alterna- 
tive to conventional artificial intelligence. The complexity of tasks which the Hopfield 
model can learn to do by example is believed to be limited to those which are first 
order in the classification of Minsky and Papert (1969); attention has therefore shifted 
toward other neural net models with greater scope. One such model is a generalisation 
of the perceptron of Rosenblatt (1962) due to the PDP group (Rummelhart and 
McLelland 1986), which has extra, hidden (i.e. neither input nor output) neurons; this 
is known as the multilayer perceptron or feed-forward net. 

A learning algorithm for this network was proposed by Rummelhart et a1 (1985) 
and Le Cun (1985), called back-propagation, in which a cost function, proportional 
to the total number of errors made by the net, is minimised by a modified gradient 
descent. 

It is clearly of importance to know how the typical number of steps, k, needed to 
learn a task varies with the parameters in the problem. Valiant (1984) and Volper 
and Hanson (1986) have proposed that k varies exponentially with the order of the 
task being learnt. Tesauro (1987) has considered the variation of k with the number 
of patterns, U, in the training set for the 32-bit parity problem and arrives at the relation 

k - u4/3 

Rummelhart et al consider the variation of k with the number of hidden units, m, 
and find 

k - -log m. 
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The work described here addresses the question of the variation of k with the 
number of bits in the input word, specifically for the content addressable memory task. 
Scalettar and Zee (1986) considered this and performed simulations in which the 
number of patterns and the number of hidden units were fixed: only the word length, 
n, was varied. They concluded that k tended to a constant as n increased. Here we 
shall consider the case in which n, m and v are scaled up together and propose a 
relation of the form 

k -  n" v = m = [ i n ]  
for this particular task. 

The learning time of this model for CAM is not of interest in itself because the 
original perception with its learning rule can learn the task much faster than the 
multilayer perception using back-propagation. The original model, however, cannot 
do the higher-order tasks at all. The only reason that CAM has been investigated is 
that back-propagation is so much slower for the more complex tasks that the collection 
of a sufficiently large amount of data would require excessive computer time. 

The remainder of this paper is arranged as follows: § 2 describes the feed-forward 
net and the back-propagation algorithm, § 3 discusses the numerical simulations, § 4 
gives their results and D 5 contains a brief summary and a few comments on the results. 

2. The three-layer perceptron and back-propagation 

The neural net studied here has the architecture shown in figure 1. Each neuron is 
labelled by which layer it is in (a = 0, 1,2) and by its location within the layer 
( i  = 0,1,. . . , n(")). The state of each neuron is a continuous variable Sp E [ - 1 , 1 ]  
except for the end neuron in each layer which is fixed to always have the value Sg = -1 
(this plays the role of a source of threshold potentials). The bond between neurons 
(a, i) and (a - 1, j )  has an associated weight Jt . The input to the net is a binary word: 
Zi E { -1 , l )  i = 1 , .  . . , n"). The state of the ith neuron in the lower layer is set to the 

Figure 1. The architecture of the three-layer perceptron. Open circles represent dynamical 
neurons. Shaded circles are the quenched neurons. 
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value Zi .  The states in the middle layer are set by a dynamical rule and then so are 
the states in the upper layer. The rule is the following: 

The states in the upper layer are then taken as the output of the net; this output is 
only a binary word if p = CO (i.e. tanh ($x) = sgn(x)). This ‘feed-forward’ dynamics 
is strictly deterministic and, for fixed weights, a given input I will elicit a unique output 

Learning is thus a question of finding a set of weights, J, which correctly associates 
each word from an input ‘training set’ with the corresponding word from an output 
set in the limit P + 00. 

Let the input training set be { I ( p ) :  p = 1, .  . . , v} and the output set be {dP)}. The 
back-propagation algorithm defines an energy or cost function, 

E p ( J ) = $  I O i ( p , J , I ( p ) ) - ~ ! p ) 1 2 .  

O(P, J, 1). 

Y .(P’ 

p = l  i = l  

The weights J are initially chosen at random and then iteratively adjusted according 
to the rule 

A useful analogy is to a particle moving on a complex, high-dimensional surface. The 
gradient term is a ‘gravitational’ force pulling the particle downhill while the second 
term is an ‘inertial’ force or momentum tending to keep the particle moving in the 
same direction. The introduction of momentum speeds up the convergence of the 
algorithm and allows the particle to escape from narrow local minima. 

For a given training set, initial weight vector J ( 0 )  and set of parameters ( n ( p ) ,  7, p 
and P )  there is a unique number of steps, k ( J ( 0 ) )  for the descent to find a solution 
(not necessarily finite because of broad local minima). We wish to know, for a given 
architecture { n ( a ) }  and fixed size of training set, v, the distribution of k (J(O), { I } ,  { T } )  

over all starting weights and all such training sets. We define this to be p(k),  k = 
0, 1 , .  . . ,a, satisfying 

J(k+ 1) = J ( k ) -  vVjEp(J(k))+p(J(k)-J(k-  1)). 

Clearly the computational time for the calculation of one step scales with wordlength, 
n, according to the number of bonds, i.e. - n 2  so the mean learning time will scale as 

( t ) -  na+2 .  

For the CAM task discussed in the rest of this paper ncO)  = n ( 2 )  = n, n‘” = m and the’ 
input and output sets are identical. 

3. Numerical simulations of learning 

In the simulations p was fixed at one during the gradient descent, but the criterion 
for termination was that E,(J) = 0, i.e. the output matched the input exactly, with 
f ( x )  = sgn (x). An upper limit of l o o n 2  steps was imposed: any descent not having 
converged after this many steps was restarted at a new, random point in weight space 
and the step counter set to zero; in a typical run of 5000 descents this occurred less 
than 20 times and is due in these cases to particularly difficult training sets containing 
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two patterns differing in only one bit (for higher-order tasks failure to converge is a 
much more serious problem, even when the step limit is greatly increased, indicating 
the importance of broad local minima in these more complex tasks). Each weight, 
J ; ,  was chosen with uniform probability from the interval [ - 5 , 5 ] .  

Each run consisted of N descents, g = 1 , .  . . , N :  the number of steps taken in the 
descent k, was recorded. The distribution p (  k) approximated by 

and the mean value by 

In the first set of runs n, m and v were fixed and 7 and p were varied between 0.1 
and 0.9 in 0.1 steps. The values which minimised E were then used in subsequent 
simulations. In the next set of runs n was fixed and the number of patterns, v, and 
the number of hidden units, m, varied together (i.e. m = v). This showed that for v 3 i n  
the mean learning time was constant within errors. Consequently in the main simula- 
tions the training set size and the number of hidden units were fixed at v = m = [in]. 
The main simulations consisted of 1200 descents for each value of n in the range 
n = 3 , 4  ,..., 12. 

4. Results 

Figures 2 and 3 show graphs of E against 7 and p from the first simulations with 
n = 8, m = 4, v = 4 from 500 runs per point. In subsequent simulations 7 = 0.4 and 
p = 0.5 were chosen. 
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Figure 2. Plot of mean learning time against the 'downhill' step parameter, 7. 
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Figure 4. Plot of mean learning time against number of patterns learnt, with the number 
of hidden units, m, always equal to the number of patterns. 

Figure 4 shows a graph of E against m (  = v )  for n = 8 with 500 runs per point. 

Figure 5 shows a graph of log E against log n for n = 3 ,4 , .  . . , 12. The best fit line 
Clearly for m 2 $n this is effectively constant. 

to this set of points has slope 1.8 f 0.2 and we therefore infer the scaling law 

( k ) -  n a  a = 1.86 f 0.05. 

Figures 6 and 7 show the distribution p’( k )  for n = 4 and n = 12. Clearly for the 
larger value of n the distribution has spread out, in fact the width appears to scale 
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Figure 5. A log-log plot of mean learning time against word length. 

k 

Figure 6. The distribution of learning times p l ( l i )  for n = 4 and m = Y = 2. 
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k 

Figure 7. The distribution of learning times $ k )  for n = 12 and m = U = 6. 

approximately as 
- 

although a precise determination of the exponent would require much more data. 

5. Comments 

The errors shown on the graphs are derived from the second moment of the distribution 
C(k). Because of the breadth of this distribution they do not represent the usual levels 
of confidence. For example the value CT = 2 is not impossible, but there is no particular 
reason why it should be an integer, and seems fairly unlikely from the data. 

The fact that the learning time does not show any tendency to self-average, as 
observed by Smeija and Richards (1987) (i.e. W does not vanish as n + CO), is not so 
surprising. Consider the following problem, which is in no way to be taken as a model 
of back-propagation but may have some features in common. A particle executes a 
random walk on the edges of a d-dimensional tehrahedron: the walk starts at a randomly 
chosen vertex and terminates when the particle lands on one special ‘target’ site. The 
probability that this random search takes I steps is 

- 
The mean number of steps is then T =  n while 1’ = 2n2 hence W -  constant as n + CO 

so that the distribution of search times does not self-average even in this very simple 
example. 
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In summary it has been shown that the mean number of steps required in learning 
by back-propagation, for a first-order task, scales with word length according to 
( k )  - n 1.86, but that the distribution of learning times is very broad. 

It should, perhaps, be stressed again that this result is specific to the task examined 
(CAM). The exponent cy will undoubtedly be much larger (if it is definable at all) for 
harder learning tasks. If there is any universality in the learning in these systems then 
there will be many universality classes labelled by the architectural parameters of the 
network, the Minsky-Papert order of the task and other measures of learning difficulty. 
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